Minisymposium on Spectroscopic and Related Methods in Studies of Ferroic Materials Cracow, 29-30 May 2012

Ferromagnetism of Neutron Stars

Adam Szmagliński

Institute of Physics, Cracow University of Technology

Neutron Star Structure

- Atmosphere (~1*cm*) $\rho \leq 10 g cm^{-3}$
- Outer crust
- Inner crust
- Core

) $\rho \leq 10 \ g \ cm^{-3}$ $10 \leq \rho \leq 4.3 \cdot 10^{11} \ g \ cm^{-3}$ $4.3 \cdot 10^{11} \leq \rho \leq 2.4 \cdot 10^{14} \ g \ cm^{-3}$ $2.4 \cdot 10^{14} \leq \rho$

A NEUTRON STAR: SURFACE and INTERIOR

Realistic Nuclear Models:

- 1. Skyrme (SI', SII', SIII', SL, Ska, SKM, SGII, RATP, T6)
- 2. Myers-Świątecki (MS)
- 3. Friedman-Pandharipande-Ravenhall (FPR)
- 4. UV14+TNI (UV)
- 5. AV14+UVII (AV)
- 6. UV14+UVII (UVU)
- 7. A18
- 8. A18+δv
- 9. A18+UIX
- 10. A18+ δ v+UIX*

Symmetry Energy of Nuclear Matter

$$E(n,x) = E\left(n,\frac{1}{2}\right) + E_s(n)(2x-1)^2 \qquad x = n_P / n$$
$$E_s(n) = \frac{1}{8} \frac{\partial^2 E(n,x)}{\partial x^2} \Big|_{x=\frac{1}{2}}$$

Small values of the symmetry energy:

- 1. Low proton concentration
- 2. Charge separation instability
 - realized eg. through proton localization

Spin instability of proton-localized phase

The energy density difference between polarized state and the normal one: $\delta \varepsilon = \delta \varepsilon_N + g^{pn} \delta s_N \delta s_P + \delta \varepsilon_P$

where the spin excess: $\delta s_N = \delta n_N \uparrow -\delta n_N \downarrow \qquad \delta s_P = \delta n_P \uparrow +\delta n_P \downarrow$

effective coupling constant: $g^{pn} = -2.5 \text{ fm}^2$

According to the Landau Fermi-liquid theory the change of the neutron energy density: $\delta \varepsilon_N = \frac{1 + G_0^{NN}}{2N_N} (\delta s_N)^2$

where spin-dependent Landau parameter for pure neutron matter: $G_0^{NN} = 1.0$

Density of states at the Fermi level: $N_N = \pi^{-2} m_N k_F^N$

For localized protons their wave functions extend to a limited volume: $\delta \varepsilon_P = 0$

The difference of energy density:
$$\delta \varepsilon = \frac{1 + G_0^{NN}}{2N_N} (\delta s_N)^2 + g^{pn} \delta s_N \delta s_P$$

for
$$\delta s_N = -\frac{g^{pn}N_N}{1+G_0^{NN}}\delta s_P$$
 has the minimum:
 $\delta \varepsilon_{\min} = -\frac{N_N(g^{pn})^2}{2(1+G_0^{NN})}(\delta s_P)^2 < 0$

The system has the minimum of the energy for fully polarized protons: $\delta s_P = n_P$

The system with polarized protons is unstable against small spin oscillations.

The magnetization of this phase is:

$$M = \mu_N \delta s_N + \mu_P \delta s_P = \left[-\frac{g^{pn} N_N}{1 + G_0^{NN}} \mu_N + \mu_P \right] n_P$$

The magnetic moment of neutron and proton:

$$\mu_N = -9.66 \cdot 10^{-24} \, erg \, / \, Gs \qquad \mu_P = 1.41 \cdot 10^{-23} \, erg \, / \, Gs$$

For nonlocalized protons without any proton-proton interaction:

$$\delta \varepsilon_{P} = \frac{1}{2N_{P}} (\delta s_{P})^{2} \neq 0 \qquad \delta \varepsilon_{\min} = \frac{1}{2} \left[\frac{1}{N_{P}} - \frac{N_{N}}{1 + G_{0}^{NN}} (g^{Pn})^{2} \right] (\delta s_{P})^{2}$$

so the system is unstable to spin fluctuations when:

$$\mathcal{S}_{\min} < 0 \Longrightarrow |g^{pn}| > g_c^{pn}$$
where: $g_c^{pn} = \sqrt{\frac{1 + G_0^{NN}}{N_N N_P}}$

Magnetic moment of ferromagnetic phase of volume dV is dM = M dV

The existence of the magnetic moment implies a dipole magnetic field, which at the magnetic pole on the surface of the star of radius R has the value: $B_P = 2M / R^3$

Emergence of magnetic field

The energy per baryon in the polarized phase could be below that for the normal phase by at least ~ 1MeV, so the phase transition to magnetized matter with spin ordering is expected to occur very soon after formation of the neutron star.

This sudden switching-on of the magnetic field of the magnetized core, forming a single domain, will result in the induction of the screening field which will fully shield the ferromagnetic field:

 $\vec{B}_{fer} + \vec{B}_{ind}(0) = 0$

The induced current suffers ohmic decay, and the nonzero field emerges.

Decay time of the n-th mode is: $\tau_n = 4\pi R^2 \sigma / (c\pi n)^2$

The unshielded fraction of the magnetic field which emerges after time *t*.

$$\varepsilon(t) = \frac{\left|B_{fer} + B_{ind}(t)\right|}{\left|B_{fer}\right|} = 1 - \exp\left(-t/\tau_{1}\right)$$

The age and the magnetic field of the pulsar may be obtained from the period and its derivative: $t = \frac{P}{2\dot{P}}$

From the energy loss of the pulsar: $\dot{E} = I\Omega\dot{\Omega} = -\frac{B^2 R^6 \Omega^4 \sin^2 \alpha}{6c^3}$

$$B_{obs} = \frac{c^3}{\pi R^3 \sin \alpha} \sqrt{\frac{3}{2} IP\dot{P}} \approx 3.2 \cdot 10^{19} \sqrt{P\dot{P}} Gs$$

The observed magnetic field is the sum of the residual field from the newly created neutron star and the field which emerges from the ferromagnetic core through the ohmic decay:

$$\vec{B}_{obs} = \vec{B}_{res} + \varepsilon(t)\vec{B}_{fer}$$

Name	Mass $[M_{\Theta}]$	P [ms]	₽ [ss ⁻¹]	t [year]	B [Gs]	B _{res} [Gs] – AV14+UVII
J0737-3039A	1.3381(7)	22.70	1.76E-18	2.04E8	6.40E9	4.64E9
J0737-3039B	1.2489(7)	2773.5	8.92E-16	4.93E7	1.59E12	1.59E12
PRS1534+12	1.3332(10)	37.90	2.42E-18	2.48E8	9.69E9	7.49E9
J1756-2251	$1.40^{+0.02}_{-0.03}$	28.46	1.02E-18	4.42E8	5.45E9	2.73E9
B1913+16	1.4398(2)	59.03	8.63E-18	1.08E8	2.28E10	2.24E10
B2127+11C	1.358(10)	30.53	4.99E-18	9.69E7	1.25E10	1.17E10
J1141-6545	1.27(1)	393.9	4.29E-15	1.46E6	1.32E12	1.32E12
B2303+46	$1.38^{+0.06}_{-0.10}$	1066.4	5.69E-16	2.97E7	7.88E11	7.88E11
J0621+1002	$1.70^{+0.32}_{-0.29}$	28.85	4.73E-20	9.67E9	1.18E9	-1.47E11
J0437-4715	1.76(20)	5.757	5.73E-20	1.59E9	5.81E8	-7.05E9
J0751+1807	1.26(14)	3.479	7.79E-21	7.08E9	1.67E8	-7.66E11
J1713+0747	1.53(8)	4.570	8.53E-21	8.49E9	2.00E8	-8.74E10
PRS1855+09	$1.50^{+0.26}_{-0.14}$	5.362	1.77E-20	4.80E9	3.12E8	-3.98E9
J1909-3744	1.438(24)	2.947	1.40E-20	3.34E9	2.06E8	-1.40E10
J1012+5307	1.64(22)	5.256	1.71E-20	4.87E9	3.03E8	-6.34E10
B1802-07	$1.26^{+0.08}_{-0.17}$	23.10	4.67E-19	7.84E8	3.32E9	-5.73E9
J0045-7319	1.58(34)	926.3	4.46E-15	3.29E6	2.06E12	2.06E12
J1911-5958A	$1.40^{+0.16}_{-0.10}$	3.266	3.07E-21	1.69E10	1.01E8	-1.04E11
J1738+0333	1.6(2)	5.850	2.41E-20	3.85E9	3.80E8	-2.39E10
1802-2124	1.24(11)	12.65	7.2E-20	2.78E9	9.66E8	-3.59E10

Conclusions

- 1. Symmetry energy implies the inhomogeneity of dense nuclear matter in neutron stars.
- 2. Astrophysical consequences of proton localization:
 - spontaneous polarization of localized protons;
 - influence on neutron star cooling rate.
- 3. Ferromagnetic core as the source of strong magnetic field of the neutron star.

References:

- [1] M. Kutschera, Phys. Lett. **B340**, 1 (1994).
- [2] M. Kutschera, W. Wójcik, Phys. Lett. B223, 11 (1989).
- [3] M. Kutschera, W. Wójcik, Phys. Rev. C47, 1077 (1993).
- [4] M. Kutschera, S. Stachniewicz, A. Szmagliński, W. Wójcik, Acta Phys. Pol. **B33**, 743 (2002).
- [5] A. Szmagliński, W. Wójcik, M. Kutschera, Acta Phys. Pol. B37, 277 (2006).
- [6] M. Kutschera, W. Wójcik, Acta Phys. Pol. B23, 947 (1992).
 [7] M. Kutschera, MNRAS 307(4), 784 (1999).