
Properties of Localized Protons
in Neutron Star Matter at Finite Temperatures
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Abstract

We study properties of the proton component of neutron star matter for realistic nuclear models. Vanishing of the nuclear symmetry energy implies proton-neutron separation instability in dense nuclear matter [1].
Protons which forms admixture tend to be localized in potential wells corresponding to neutron matter inhomogeneities created by the protons in the neutron medium. To compare the energy of a normal phase of uniform
density and a phase with localized protons we apply the Wigner-Seitz approximation and divide the system into cells, each of them enclosing a single localized proton [2,3]. The neutron density profile is obtained by
solving the appropriate variational equation [4]. We performed our calculations at finite temperatures [5]. Though at higher temperature the rms radius of the localized proton probability distribution becomes smaller,
the threshold density, above which the protons are localized is also smaller.

Figure 1: Entropy per baryon vs baryon number density at different
temperatures for the Friedman-Pandharipande-Ravenhall model.

Figure 2: Free energy per baryon vs baryon number density at
different temperatures for the Friedman-Pandharipande-Ravenhall

model.

Figure 3: Proton chemical potential vs baryon number density at
different temperatures for the Friedman-Pandharipande-Ravenhall

model.

Protons are impurities in neutron star matter of a few per cent abundance.
Neutron background forms a potential well with neutron density distribution given by equation

dµP (nN (r))

dnN (r)
Ψ∗P (r) ΨP (r) + µN (nN (r)) + 2BN

d2nN (r)

dr2
− µN = 0, (1)

where µN (nN (r)) =
dε(nN(r))
dnN(r)

. At Fig. 4 we show induced neutron background shape.
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can be derived from the baryon number density:
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The Fermi integrals are used here:
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Kinetic energy density:

τN,P =
2

(2π)2

(
2m∗N,PT

)5/2
J3/2

(
ηN,P

)
(5)

where Free energy per baryon (Fig. 2):

F = (ε (nN , nP , T )− T (nNSN + nPSP )) /n (6)

Chemical potential (Fig. 3) (f is the free energy density here):
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∂f

∂nN,P
= n

∂F

∂nN,P
+ F (7)

Figure 4: The neutron density distribution obtained from Eq.(1) at
different temperatures for the Friedman-Pandharipande-Ravenhall

model.

Figure 5: The energy difference ∆E = EL−E0 as a function of the
proton rms radius at different temperatures for the

Friedman-Pandharipande-Ravenhall model.

Figure 6: The minimum of the energy difference ∆E = EL −E0 as
a function of the neutron matter density at different temperatures for

the Friedman-Pandharipande-Ravenhall model.

Figure 7: The threshold density above which the localization effect
is predicted as a function of the temperature of neutron matter for

the Friedman-Pandharipande-Ravenhall model.

Figure 8: The rms radius of proton wave function corresponding to
the threshold density above which the localization effect is

predicted as a function of the temperature of neutron matter for the
Friedman-Pandharipande-Ravenhall model.

Conclusions

At higher temperatures the localization of protons in the neutron star
matter begins at lower densities and is stronger.
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